Uniiversity 4l _: Deutscher Wetterdienst
of Colagne [T Wetter und Klima aus einer Hand sy

Classification of images using a data
driven approach: K-nearest neighbor

and SVM

This content is published under the Creative Common licence Attribution honcommercial-sharealike
4.0 International

[@loie)

To know more about this Common Creative Licence, you can visit
® Legal Code - Attribution-NonCommercial-ShareAlike 4.0 International - Creative C...

LECTURE 1, 06/12/2024 (1 H)

Abstract. In this first lecture, we will start by discussing how to perform the task of
assigning a label (from a given ensemble of labels) to an image with a computer. We will
introduce a linear classifier (fully connected) based on a score function that maps images
to labels and a loss function that can quantify how good is the agreement between the
assigned labels and the image truth. Then we will understand how the network is learning
with a process called optimization, that includes various processes behind it: stochastic
gradient descent, backpropagation etc.

Keywords: Data driven approach, k—nearest neighbor, classification and optimization tasks with stochastic
gradient descent, backpropagation, nevral network architecture, activation tunctions, spatial arrangement,
layer sizing patterns, hyperparameters

Contents:

Introduction to the problem of classifying images

Data-driven approach concept: an example with the k-nearest classifier

The simplest score function: a linear classifier (Support Vector Machine - SVM)
The loss function

The optimization process

Backpropagation and computational graphs

R N N

Credits for the content in this lecture:

Almost all the material from this lecture is a collection of concepts, explanations, images and visualizations
from other more technical computer engineering lectures, done with the aim of extracting and offering to the
students of the master program of climate sciences only the minimal necessary information to achieve an
beginner level of understanding of machine learning methods applied to computer vision. We extracted
learning material from many currently available resources present on the web that we want to fully
acknowledge here. All what presented here can be found in a more extended, technical and detailed way in
the original sources listed here:

Stanford course on convolutional neural network for computer vision
CIFAR10 dataset of images

Sebastian Raschka's course page

Deep learning tutorial from Adrian Rosebrock

Article of Kemal Erdem on Medium on t-SNE representations

article from Martin Wattenber, Fernanda Viegas and lan Johnson
article on Multilayer perceptron by Carolina Bento

We deeply thank all the people that contributed to share this knowledge and make it available online,
so that other people in the world can benefit from it.

1.1 Introduction to the problem of classifying images

The general task of classifying images consists of assigning a label to a given image starting from a
set of possible labels. Our brain does this task almost daily on many different images, and it is nearly
an automatic operation where we do not have to think. If you look at the two images below, you don't
have to think to identify a cat and a dog, even if they have two similar sunglasses and they mainly lay
in a similar position. You also were not bothered by the color of the background to identify the
animals, nor confused by the color of their fur. (Figure 1).

https://cs231n.github.io/
https://www.cs.toronto.edu/%7Ekriz/cifar.html
http://stat.wisc.edu/%7Esraschka/teaching/stat479-fs2018/
https://pyimagesearch.com/2016/09/19/understanding-regularization-for-image-classification-and-machine-learning/
https://pyimagesearch.com/2016/09/19/understanding-regularization-for-image-classification-and-machine-learning/
https://pyimagesearch.com/2016/09/19/understanding-regularization-for-image-classification-and-machine-learning/
https://towardsdatascience.com/t-sne-clearly-explained-d84c537f53a
http://distill.pub/2016/misread-tsne
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

Figure 1.1: Two images of a cat and a dog.

A computer, instead, sees an image more or less like this (Figure 2). To be precise, this is how it will
see a black-and-white print: a matrix of numbers ranging from O to 255, typically. For color images, it
would have to consider three matrices, like the one in black and white, one for each of the R, G, and B
dimensions.

What a human sees in BN What a computer sees

B pexels_ height

CobE Fnpges S E T gl et of BIEgETE
rargeg e ke 20 of derewien

B, wad i) W DD)

wihara 1 reprmme e Sres oodors proeded n Hm BLE,
i Foead, Gresee, e e

H_poeds_ widlh

Figure 1.2: Representation of a black and white image as seen by a computer. Reconstructed based on figure 1in
https://cs231n.github.io/classification/

For our brain, the transformations of the image shown in Figure 3 are intuitive and we still recognize
them as belonging to the label class dog; for the computer, the transformation the dog images
undergo represented in Figure 3 challenge its ability to still recognize the images as belonging to the
class dog. A classification algorithm must be invariant to all these transformations, that means that
the classification result should not change if the image undergoes one of these transformations.

https://cs231n.github.io/classification/

w;a

:h' scale

vaﬁatinh

1

change of viewpoint

dtfurmnf'wh

l.' w ol

Figure 1.3: Examples of deformations and alterations of images that can represent a challenge for a computer to be

veelufion

learned. With rotations we can change the orientation of the objects, or with a scale transformation we can also alter the
size of an object. We can apply deformations on parts of an object, or we can disturb the vision with clutter on the
background. Also occlusions, consisting of showing only parts of the objects, are possible, and finally we can introduce a
variability in the objects belonging to the same class. Image reinterpreted based on content in

https://cs231n.github.io/classification/

1.2 Data-driven approach concept: an example with the k-nearest classifier

Now, we want to write an algorithm that enables our computer to classify images. A classifier is a
system that takes as input a vector of feature values and outputs a discrete class value for it.
How would you do it? This is quite a different task than reordering elements of an array or sorting
words based on their starting letter. There's not a straightforward way to identify a strategy for
classifying images.

One way to go is to learn from data, i.e.,, collect many samples of images of each of the selected
classes. Then, by looking at the pictures of each class, we try to learn the visual characteristics we
can identify. When one takes this approach, we say they use a data-driven approach. For this
approach to work, we need to collect data in each of the classes we want the classifier to be able to
classify the input.

The sequence of steps that a classifier needs to take are:

e INPUT: prepare an input of N images with N labels, each in one of the D classes of the dataset.
This dataset is called the training dataset.

https://cs231n.github.io/classification/

e LEARNING: In this phase, the classifier uses the training set to learn for each image, which is its
label.

e EVALUATION: In this phase, the classifier is evaluated by testing it on a dataset it has never seen
before (testing dataset). We can assess if the predicted label equals the image's label for each
image in the test dataset.

Example of a classifier: the k-nearest neighbor

One example of an image classifier is the k-nearest neighbor. How does the nearest neighbor
algorithm work? It is an algorithm based on proximity; it stores the labels of the training examples
during the training, and since there's no additional processing other than merely memorizing the
labels, the K-nn is also called the lazy algorithm. Once the training is over, the KNN algorithm identifies
the k-nearest neighbors of a given image by deriving the label for that image from the labels of the k
nearest images.

The CIFARIO dataset contains 60000 color images in 10 classes, with 6000 images per class. The
figure 4 shows 10 random images for each class.

apiane (ot N BN - BRI D =
awtomonite 21) 6] U B il s) o 5
e S WEES ¥ B
cat FEOHMNEEE P
gor [T N O
o [AESHSBREE
oo [y I I N O D ER R R

horse -!ﬁﬂiﬂﬂﬂmﬂm
S = AT P P
ek o R s I BB S o D R

Figure 1.4: Example of 10 random images for the 10 classes from the CIFARIO dataset, available at

https://www.cs.toronto.edu/%7EKriz/cifar.html

The classifier must prescribe a way to measure the distance to establish the K-nearest samples.
Reasonable choices for calculating the distance between two images can be the L1 or the L2
distances (also sometimes called Manhattan and Euclidean distances, respectively).

de, (1 B2) =3 |1} - I

i
e, (f1,f2) =]LII'IIZlff - IR

The distances are calculated pixel-wise. For L1 an example is shown in Figure 5,

https://www.cs.toronto.edu/%7Ekriz/cifar.html
https://www.cs.toronto.edu/%7Ekriz/cifar.html

test image training image pixel-wise absolute value differences

56 | 32 | 10 | 18 10|20 | 24 | 17 46 | 12 | 14 | 1
90 | 23 128 133 e 10 | 89 | 100 _ 82 | 13 | 39 | 33 o
24 | 26 | 178|200 12 | 16 | 178|170 1210 | 0 | 30

2 | 0 |255 220 4 | 32 |233| 112 2 | 32| 22 |108

Figure 15: graphical representation of the calculation of the L1 pixelwise distance between an test and an training image.

Image reinterpreted based on content in https://cs231n.github.io/classification/

while for L2, the difference is computed pixel-wise as before, but then all terms are squared and
added under the square root.

Once the ensemble of the closest k images is derived, the predicted label is the one that recurs more
frequently in the K-selected labels. Figure 5 shows an example of the KNN algorithm (from Raschka's
notes):

Figure 1.6: Example of K-nn algorithm with k=5 and 3 classes. In the figure, we can see that the predicted label of the grey
triangle is the one that among the k-nearest neighbors, occurs more frequently, 3 times compared to 1time for each of the

other classes (Image from Sebastian Raschka's course page stat.wisc.edu/%7Esraschka/teaching/stat479-fs2018/).

The parameter k for the K nearest neighbor classifier and the distance metric used are
"hyperparameters." The hyperparameters are the ensemble of all the parameters (and choices)
that we need to set for setting up the classifier, for which we don't know a proper value apriori.
To understand the best value/choice for the hyperparameters, we need to reserve a small part of the
training dataset, called the validation dataset, to tweak hyperparameters. For this purpose, using a
dataset that is not the test dataset is essential. The risk is to tune the parameters to work perfectly on
the training data but then create, in this way, a classifier that cannot generalize on a dataset that is not
its training dataset. This problem is called overfitting. For the example of the CIFAR10, we can set a

https://cs231n.github.io/classification/

validation dataset of 1000 images, while the training data is 49000. The dataset configuration will thus
look like this

Validation

dataset
Training dataset (49000) (1000) Test dataset (1000)

Figure 1.7: Example dataset splitting in training, validation and test dataset for the CIFAR1O dataset.

Cross-validation: another way to avoid overfitting is to split the data into folds, and then try each fold
as validation dataset, and then average the results.

. training folds

. validation folds testing folds

Figure 18: Example dataset splitting in training, validation and test dataset for tuning of the k-value hyperparameter for the
knn algorithm for the CIFARIO dataset. The figures are obtained with the knn algorithm provided in the exercises of the

course https://cs231n.github.io/classification/

When we run the cross validation for determining the right value for k using 5 folds, for each fold we
obtain one dot associated to the selected value of k we are testing. By plotting the accuracy for each
of the k values tested, we can identify which is the k-value that works best for the data we are
working with. In the figure, a value of k around 10 seems to best perform with the data.

NOTES ON KNN: In practice, K-Nearest neighbor is never used for image classification because it is
very slow at test time and also because there is no information contained in the distance metrics of
the pixels. Its typical applications range from text mining, to agriculture, finance, medical and facial
recognition, since it is a simple algorithm based on value of K and the distance function and it is
efficient on small datasets.

1.3 The simplest score function: a linear classifier (Support Vector Machine - SVM)

Let’s define here a score function that maps the pixels of an image into a score assigned to each
class. Let’s define a training dataset of N example images xi (i=1...N) associated with a label yi
belonging to the K labels of the N images (For every i an xi belonging to {x],... XN} has a label yi

https://cs231n.github.io/classification/

belonging to {y1,...yN}). The dimension of the images is D = 32 x 32 x 3 = 3072 pixels, and K, as for
CIFARI10, is 10 (ten classes: dog, tier, etc..) . Imagine that our training dataset is made of N=50000
images, and define now a function f that maps the 3072 pixels of one image into one of the K labels.

Formally, the function will be:
flz, W,b) = Wz; +b

where in this equation all pixels of xi are flattened in the shape [Dx1], and W, the matrix of weights of
size [KxD] and the vector b of size [Kx1] are the parameters of the function f. Often, the parameters in
W are called weights, and b is the bias vector influencing the output scores. We can illustrate the
score function with the following diagram:

Stretching pixels in a single column

N
A 4
0.5 13 15 234 0.45 196.55 RABBIT
3
g CAT
0.87 0.39 -0.24 152 | S 3.2 230.72
4 rows g+ >
(labels) g
on -0.21 0.56 79 2 14 36.6 DOG
5
§
g
z
0.97 -0.42 -0.8 28 230.42 TIER
H r
W Xi b Sl W, B

4 elements

N columns (image pixels) (labels)

input image

Figure 1.9: Representation of a linear classifier. Figure inspired by Karpathy’s example in Stanford University’s CS231n

course.

How does the linear classifier work? For each class, it calculates a score which is the result of the
sum of the products of the weights of each row by the normalized pixel values. During the training,
we optimize the weights for the task of recognizing the specific label assigned to their column. An
example of the weights (one column of the W matrix) of a trained linear classifier for the CIFAR10 is
given in the figure 1.10. It is interesting to notice that for some labels we can recognize features that
we expect for them, like for the horse, we see two horse necks, and for ship and plane, there’s a
dominance of blue pixels, due to the sea and the sky, respectively.

plans clf i cak dmar g L] L0] e sl

Figure 110: Example of weights optimized for the identification of the CIFAR1O classes. Figure from the course

https://cs231n.github.io/classification/

NOTE: A frequent way to simplify the parameters W and b is to combine them into a single matrix
that holds both and expanding the vector xi of an additional dimension holding the constant value 1,
the default bias dimension. The new score function would then look like this:

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
https://cs231n.github.io/classification/

flz,, W) = W,

where now xi is [3073x1] and the new W maitrix is [10x3073].

NOTE: In the diagram of Figure 110, we used the original image pixel values as input, therefore for the
image xi you can see values ranging from O to 255. It is a good practice in machine learning to
preprocess the input features (in our case, the image pixels) the input data, by centering them around
their mean and by normalizing the values between -1 and 1. We will come back to this point, generally
named regularization of the input data.

1.4 The loss function

How do we get the best weights in the W matrix for the classification? Before, we stated that the loss
function establishes how good the classifier is. What is the form of the loss function? If we have N
examples of a images xi and their corresponding labels yi, the loss function over this dataset of N
elements is given by the sum of the losses Li over each of the single examples plus a regularization
term R(W):

N
L= = 3 Li(f(e W), 41) + AR(W)

=1

where f(xi, W) is the result of the scoring function (the predicted label) and yi is the so-called “ground
truth”, i.e. the label associated with the xi image of the dataset. In general, excluding when we are

overfitting, the smaller is the loss and the better is the classifier doing the job of classifying images. If
the loss is large instead, we will need more work to increase the accuracy of the classification, i.e. we
will need to better tune the weights through the optimization process. The regularization term R(W)
is a term that helps to control the capacity of our model to generalize to unseen data. The parameter
lambda is another hyperparameter, called the learning rate, that is essential for the learning task.

Regularization: a couple of details more. To expand on the regularization term, it is important to say
that it helps the model to get a correct classification on data points on which it was not trained on. If
we remove the regularization term from the loss function, the classifiers will tend to overfit the
training data, and will lose its ability to generalize to test data or other datasets. However, also having
too much regularization can become a problem, because it might cause underfitting, i.e. that the
model does not perform well on the training data, and thus has difficulties in modelling the relations
between the input images and the output labels. Figure 1.11 shows examples of underfitting and
overfitting for a given set of data points.

Figure 1.11: Example of underfitting model for the red data points in orange, an overfitting model is shown in blue and

generalizing function in green. Figure from Deep learning tutorial from Adrian Rosebrock

There are multiple forms for the loss function. Here, we will introduce:

e the Multiclass SVM loss (Hinge loss)
e Softmax classifier (cross entropy loss)

Multiclass SVM loss (Hinge loss)

Let’s introduce the form of the Hinge loss function, also called Multiclass SVM loss because it is a
generalization to more categories than just 2. Indicating the result of the score function s = f(xi, W), we
can write the Hinge loss for the sample {xi, yi} as:

e 8; — &y, +1 otherwise

H ROOTE of the CRrrect fH‘t.-l'!ﬁl:,'lT'-u'

BT

a;: seore of the incorrect category

The hinge loss function sums on all the incorrect classes j (j different than i), excluding the correct
category; it compares the score of the correct category and the score of the incorrect category. If the
score for the correct category is greater than the score for the incorrect category by some safety
margin (that is set to 1), then we get a loss of zero. Otherwise, the loss it will return the value of the
difference. Summing up over all the losses of the image (see definition of L given above) will give the
final loss for the single example in the dataset (remember to include the regularization term).

The SVM loss can be re-written in a more compact form as:

https://pyimagesearch.com/2016/09/19/understanding-regularization-for-image-classification-and-machine-learning/

Lg = Zmﬂﬂ?{ﬂ?-ﬂj — gy +1)
i#]

Example:

training P | Lim_1) = max(0,1.23-3.54+1) + max(0,-2.1-3.54+1) = O
examples R &' E
3.54 2.4 -3.1

L(im_2) = max(0,-2.4-5.3+1) + max(0,0.5-5.3+1) = O
L(im_3) = max(0,-3.1-2+1) + max(0, 1.23-2+1) = 0.23

CAT

DOG 1.23 5.3 1.23
Loss over the full dataset:

L = L(im_1) + L(im_2) + L(im_3) = 0.23
TRAIN -2.1 05 2.0

Figure 1.12: Example of loss function calculation for SVM loss.
Softmax classifiers (cross-entropy loss)

Like in the previous case, we start from a function that, given the input image, assigns a score for
each of the output labels. In the softmax classifier, we interpret the scores as unnormalized log
probabilities for each of the labels. Given that the probability of a given label to be k given the input
image xi is

B
l’_fj"

i

Since the loss function should minimize the negative log likelihood of the correct class, Li is:

Elﬂya

L; = —logP(Y = y;| X = z;) = —Eﬂﬂ{w}
J

and therefore, we can write the cross-entropy loss as:

e®vi
L; = —fﬂﬂ(ﬁj
J

Note that what is called the softmax function is the argument of the log, i.e. the exponentiation and
normalization of the correct score with the sum of all the scores

Exercise: can you calculate the loss function using_the training_example presented before, if the
chosen loss function is the cross-entropy loss function?

General approach: putting all the pieces together

A more general approach to the task of image classification can be described using three main
components, that are a score function, which it maps the raw data into the class scores, a loss
function, that quantifies the agreement between the predicted scores and the ground truth labels,
and the regularization function, that determines the learning rate.

This approach has three main steps:

1) REPRESENTATION: We find a way to represent the classifier in a formal language the machine

understands, i.e. we need to define the form our score function and train it.

2) EVALUATION. The score function assigns the score to each of the labels and the loss function
establishes how good the classifier is and distinguishes the good from the bad ones.

3) OPTIMIZATION: This is a method that operates on the loss function and on the regularization

function to search among the classifiers in the language of the highest-scoring one.

prm— regularization loss

WI—

scond funclion - L

:\-jlf(mi:wi data Ims__‘:L

Figure 1.12: Example of the full approach representation. Figure from by Karpathy’s example in Stanford University’s CS231n

course.

Before moving on, we want to introduce a way to represent the linear classifiers and all what we have
been talking until now, which is the computational graph. Here below, we represent a linear classifier
with the loss function we just described.

—|u ag = a,, +1,
Ly = R
L { =y 1 ik herwies

AR(W)

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

Figure 1.13: Example of computational graph applied to the linear classifier and to the SVM loss function.

1.5 The optimization process

The remaining question is “How do the get the best weights W?”. The optimization process is the one
that will do this job by finding the weights that minimize the loss function. Typically, the loss function is
a multi-dimensional function and the minimization of such a complex is not easy. One can try different
approaches:

e Random search: you can try different random weights and see which one of them works best.
Typically, the random approach gives very bad results, but it might be useful for iterative
refinement, i.e., since finding the best set of weights W is very difficult, one can start with a
random set and then proceed to iteratively refine them, improving them at each step.

e Random local search: you can start with a random search and then apply perturbations to that,
updating only if the loss of the perturbed state is lower than the original one. In this case the
accuracy is slightly better than before, but still far from being acceptable.

e Following the gradient: for multidimensional function, the gradient identifies the direction of the
steepest change. Thus, it can be identified as the direction where to go for updating the weights.
In one dimension, this is just the derivative of the function in that point, while in multiple
dimensions we need to consider the vector gradient, whose components are the partial
derivatives with respect to each dimension. The slope in any direction is given by the dot product
of the specified direction with the gradient. The steepest descent is the one with the most
negative gradient.

Computing the gradient. There are two ways to compute the gradient: the easy but approximate
way is to do it numerically using the finite differences, otherwise you one can use the calculus, i.e.
derive the analytical expression of the derivative of the loss function with respect to the weights. This
second method is exact but it is more prone to errors.

Numerical calculation. For the numerical calculation, one can implement in a code the formulation of

the gradient:
o [h) — F(x)
Of _ g P8 — ()
I&,T h— 0l I

where X is a vector the h is an array of increments, and f is an array of partial derivatives. The code
iterates over all dimensions, adds a small change h on that dimension and calculates the partial
derivative of the loss function on that direction to see the change in the function. This formula can
calculate the gradient at any point and for any function and the slope of the loss function along each
dimension, given by the gradient, can be used to calculate an update in the weights. While this
gradient is simple to compute, is it an approximate estimation of the steepest gradient and it is very
computationally demanding.

Calculus. In this way, we can derive the exact expression of the gradient of L with respect to the
weights and it is fast, but the calculus is prone to errors

Gradient descent and stochastic gradient descent (SGD). Usually, the way to proceed is to
calculate the gradient analytically and then check with numerical gradient.

VwL(W) = = 3 VwLi(f(z:, W), %) + AVw R(W)

The procedure of iteratively calculating the gradient and then performing a parameter update is
called gradient descent. This is one of the most used ways of optimizing the loss function in neural
networks. However, calculating the gradient for the entire loss function is expensive when N is large,
SO one way to approximate this step is to approximate the sum over N to a sum over a subset of the
full total of the examples, i.e. on a minibatch of 32/64/128 elements of the sum. When we have
millions of examples like it happens for convnets, a typical batch can contain 256 examples. The
batch is then used to perform an update. When the minibatch comprises only one example, we talk
about stochastic gradient descent (SGD).

1.6 Backpropagation and computational graphs

As we previously stated, we want to calculate the gradient of the loss function with respect to its
weights:

Vi L(W)

and we said that for doing this, we need to derive the analytic gradient of the loss function with
respect to the weights. Backpropagation is a way to calculate gradients of given functions, by
applying recursively the chain rule. The chain rule, in calculus, is the rule that allows to express the
derivative of the composition h of two derivable functions f and g in terms of the derivatives of the
two functions:

SO:

h(z) = f'(9(x))g'(z)

For neural networks, the function h will be the loss function and the input x will be the training data,
dependent on the weights. Backpropagation is as essential component of machine learning and it is
the method that practically allows the algorithm to learn.

Backpropagation consists of two main parts:

e Forward pass: the input goes through the network and provides a prediction.

e Backward pass: from the calculation of the gradient of the loss function at the final layer,
recursively by applying the chain rule weights get updated in the network.

To show how practically backpropagation works, we build an easy example, with the function:

fle) = (z+y)z

where we can define g = x + y, and it will become:

flg,) = qs
g=x+y
Based on these definitions, we will have:
af tq
Ll SR ac S|
dy dx
af ol
—_— = = I =+ —_— -l
PR By

and if we construct the same graphical representation as done for the linear classifier, where the
forward pass computing values from the input to the output is in green and the backward pass is in
red, we will get:

X=3 X
q=38
afig _ \ a=a+y FORWARD Fle) = e ti0s
ip Br
o _ f=-16
dy
y - 5 y —> + —
LT I
z=-2 Za
ﬂ=e;l=;z'.+,l,|

Figure 1.14: Representation of forward and backpropagation for a very simple function f(x, y, z). Figure reconstructed from

the lecture series of the Stanford University’s CS231n course.

It is important to note that the derivative of each variable contains information about the behavior of
the whole function on that particular value, i.e. it is a local information. Every gate in the diagram gets
an input and, based on that, it can provide the output and the gradient of its output with respect to its
inputs and this operation do not depend on the rest of the circuit in which the gate is located. After
the forward pass, during backpropagation, because of the chain rule, the gate multiplies the gradient
of the loss function with respect to its output for the local gradients of its inputs, and passes it
backwards to its inputs. This is better represented in figure 1.15:

http://cs231n.stanford.edu/

local gradients

aL

iz

iz
di
iz f
oy

Figure 115: Representation of the behavior of a gate, Figure reconstructed from the lecture series of the Stanford

University’s CS231n course.

We can also analyze some patterns in backward propagation, that depend on the operations we do,
for example:

e Addition gate: it distributes the gradient equally on both the input branches. For example, in figure
114 you can notice that the backpropagated gradient value of -2 in q is propagated unaltered to
both the input x and y. It does so, independently of the values of the input gates.

e Max gate: a gate that in the forward pass transfers only the highest value of the inputs, in the
backward propagation acts as a switcher, that means that it distributes the gradient unaltered to
only one of its inputs, specifically the one that had the highest value during the forward pass.

e Multiplication gate: it is the hardest to interpret, we can just say that its local gradients are the the
input values switched, see for example the backward pass in figure 1.14 at g and z: it is exactly 8
(equal to g) in z, and -2 (equal to z) in q.

Vectorized backpropagation. All what we presented for single variables can be extended in the
same way to matrix and vector operations. If you are interested in digging more into this, take a look
at the work of Erik Learned-Miller or to this paper from Atilim Gunes Baydin.

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
http://cs231n.stanford.edu/vecDerivs.pdf
https://arxiv.org/abs/1502.05767

